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SHELL FINITE ELEMENT METHOD VIA REISSNER’S
PRINCIPLE

CARLOS A. PrATO*

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract—A specialized form of Reissner’s variational principle for stresses and displacements suitable to
formulate a finite element version of the governing equations for thin shells is presented. The Euler equations of
the modified Reissner’s functional are three force equilibrium equations and three moment curvature relations
expressed in terms of the linear displacement vector and stress couple vectors. The boundary conditions are
derived as natural conditions of this functional. The shell domain is divided into a set of triangular or quadrilateral
elements for the purpose of defining a set of piecewise linear functions as comparison functions for the dependent
variables of this formulation. The use of these functions, expressed in terms of their values at the nodes, in the
variational principle results in a set of algebraic simultaneous equations for the nodal variables. A characteristic
of the method is its algebraic simplicity and accuracy when compared with other approximate methods of solution.
Some numerical examples practically illustrate these characteristics of the method. When this method is specialized
for plate bending analysis a significant improvement with respect to a similar previously known finite element
procedure is observed.

NOTATION
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Cartesian components of the oriented side *‘i” of the projection in the x,x, plane (Fig. 2)
area of the projection of an element into the x,x, plane

equation (33) and Fig. 2

coefficient that relates the transverse shear force with transverse shear strains (equation (19))
coupling coefficients in the linear coefficient matrix L;; (equation (48))

portion of the boundary with displacement boundary conditions

Youngs modulus

flexibility coefficients in equation (48)

shell thickness

Reissner’s functional

nodal points in a triangular element taken in a counterclockwise sense (Fig. 2)
linear coefficient matrix (equation (47))

stress couples

stress couple components (equation (16))

stress couple at the boundary (equation (81))

stress resultant

stress resultant components (equation (13))

stress resultant at the boundary (equation (79))

load intensity vector with components (p,, p,, p.)

vector of right hand sides in equation (46)

position vector (Fig. 1)

radii of curvature of shell middle surface

portion of the boundary with stress boundary conditions

stiffness coefficients in equation (48)

linear displacement vector with components u, v, and w (equation (29))
displacement vector at the boundary with components v,, v, and w (equation (78))
potential energy density of the applied surface loads

vector of unknowns in equations (46)

strain energy density in terms of stresses
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Wy strain energy density of in-plane stress resultants in terms of u
W strain energy density of bending stresses in terms of M;

!
o Lamé parameters: o; = ;r

(7Xj
Vi transverse shear strains
A angle of obliqueness of shell coordinate system
€ linear strain vector with components ¢;; and y; (equation 15)
[} rotation vector with components §,, ., and w (equation 18)
b, rotation vector at the boundary
K; angular strain vector with components x;; and x; (equation (14))
v poisson ratio
() denotes differentiation with respect to x;
(i triangular coordinates (equation (32))

Xy, X,,z shell coordinate system

t,,t,,n  unit vectors along the coordinate lines x, x, and along the normal to the shell respectively
t.t,.n unit vectors at the oriented boundary

s curvilinear coordinate at the boundary

1. INTRODUCTION

THE governing equations of the theory of thin shells can be conveniently derived by
means of variational considerations, particularly when an approximate solution of a shell
problem is desired. Reissner’s Principle, [1-3, 5] specialized for thin shell theory from its
three dimensional elasticity formulation, provides in many practical applications a suffi-
ciently general variational statement of the shell equations.

The present work is concerned with a variational formulation of the shell equations
and its solution by means of finite element technique whereby any variable can be expressed
in terms of at most the first derivatives of those variables which are solved for explicitly.
The desired variational statement is obtained by suitable specialization of Reissner’s
Principle. The desirability of such a method for shell analysis is twofold—on one hand it
avoids the consideration of derivatives higher than the first. In that way, terms which tend
to introduce large numerical errors need not be considered ; on the other hand, it allows
the use of piecewise linear functions as comparison functions and thus results in discrete
equations which are algebraicly simple.

The present work deals only with the equations of the linear theory of thin shells, but
a similar treatment of the nonlinear theory of shallow shells and linearized stability analysis
has also been developed [11].

2. GOVERNING EQUATIONS

Reissner’s Principle states that

3 =0 (1)
where

I =f (N, .&,+N,.&,+M, . x,+M, . x,—-W+U)dA

—f(Nn.un+Mn.¢,)ds—f [N, @, —8)+M,. @, —d)ds ()
s D
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and the equations of definition:

1 ou Or

£ = a;sin A 5;+55 x¢) )
1 54)

%= a;sin A 6x 4)

The upper bars in equation (2) denote prescribed values of the corresponding variables.
The Euler equations of equation (1) are:
(a) The equilibrium equations:

0 ¢ .
p (a2N1)+ (oc1 J)+aa,psinA =0 5
Xy
or or
(“2M1)+ (a1M2)+ X(“2N1) ax ——x(,Ny) = 0. (6)
2
(b) The stress strain relations:
2 oW 6W
& = t 7
LN Ytag" @
2 oW
i = t + 1 . 8
K j; TR (8)
(¢) The boundary conditions:
N, =N, )
and
M,=M, onS$S (10)
u, = u, (11)
and _
¢, =¢, onD. (12)

All stress variables and displacements appearing in equation (2) can be varied freely
whereas strain variables must be varied in such a way that equations (3) and (4) also hold
for the variations of the variables involved.

Consider now a component representation (Fig. 1) such that the dot products N, . g; and
M;. x; keep the same form as in orthogonal curvilinear coordinates when expressed in
terms of the vector components:

N; = N,t;+0n (13)
K; = Kit;+ . (14)
g, =¢.t; y=g.n (15)
M;=M,.t; M;.n=0. (16)

Imagine now that equations (6), (7), (10), and (11) are identically satisfied by expressing
N;; in terms of u through equations (3) and (7), Q; in terms of M; through equation (6), and
the boundary conditions equations (10) and (11) are directly enforced. It is then possible to

* Note that the component of &; along the normal to the shell, y;, does not have an associated stress-couple
component M;. m, so it must be obtained in terms of ¢ from equation (4).
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il

FiG. 1. Shell coordinates and component representation.

obtain the contracted form of Reissner’s functional after a number of integrations by parts
= [ W U (V1= Noido+ 04, = )+ Q22— o) 04

—fﬁ,,.u,,ds-’rf M,.d,ds (17)
S D

W,, = strain energy density associated with the in-plane stress resultants as function of u

Wy = complementary strain energy density associated with the bending and transverse
shear stresses as function of M.

¢= “ﬁ2t1+ﬂ1t2+wn (18)
y; = C,Q; as function of M, (19)
B:, w are functions of u and M; from equation (3).

The Euler equations of the functional in equation (17) are equations (5), (8), (9), and (12)
expressed in terms of wand M,;. Since equations (6), (7), (10) and (11) are identically satisfied,
the Euler equations of equation (17) represent a reduction of the complete system of the
shell equations.

3. FINITE ELEMENT SOLUTION

To illustrate the solution of the shell equations by means of a finite element procedure
using the functional in equation (17), the linear equations for shallow shells [4] in ortho-
gonal curvilinear coordinates are presented in discrete form. Obviously, an entirely similar
procedure can be developed for nonshallow shells [11] which results in somewhat more
involved algebraic expressions and the reader is referred to ref. 11 for the treatment of this
case.
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For shallow shells equations (3) and (4) in scalar form can be written*

w
= Yy e 20
€11 = U 1+R11 (20
w
= Pyt — 21
€2 =V 2+R22 (21)
. w
&12 = &1 = 7(“'2"’”'1)"’7 (22)
12
Ky = B\,l =Y, Wy (23)
K2z = .32,2 =Y2,27" W22 (24)
Ki2=Ba1 =Y21—"W2n (25)
Kz = 51,2 = Y127 W12 (26)
71 = Byt wy (27)
72 = Brtw, (28)
u = ut, +uvt,+wn (29)

X

Fi1G. 2. Triangular coordinates in a shell element.

If it is assumed that N;, = N,, and M, = M,, (the moment equilibrium equation
about the normal will be violated by a negligible amount for thin shells [11]) W,, and Wy
for an isotropic elastic thin shell can be taken as

Eh

Wu = m[gﬂ 524+ 2ve1 1855+ 2(1 = V)ey 2824] (30

* In order to conform with the usual notation for angular strains and stress couple components it is now taken:

K; = — Kty +K;,t, instead of that given by equation (14). Similarly M; = — M,t, + M, t, instead of that of
equation (16).
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6 i C. i
Wy = E;}}[Mh+1‘W§3~—2\'M11M22+2(1+v)M12M21]+ ZQ[Q%‘*'QE] 1)

Consider now a triangular shell element (Fig. 2) where a point P can be located by its
triangular coordinates:

A4;
(= 1 (32)
where A; = JJK x JPI. (33)
The following comparison functions are now defined for a point P in the element

u=ul;, sumoni (34)
v=u{; (35)
w = wi{; (36)
My, =M [ (37)
My, = My, G (38)
My, =M, & (39)

And the load intensity components
Py =pi (40)
P2 = p2&i (41)
Pn = Pnéi- (42)

The use of equations (34) to (39) in equations (20) to (22) and equations (30) and (31) and
the introduction of:
Qi =M, +M,,, (43)

Q, =M,,,+My,, (44)

together with equations (27) and (28) into equation (17), after taking the variations results
in a system of algebraic linear equations for the nodal values of u and M,. Since one is
interested in applying this variational principle to an assemblage of elements it is necessary
to indicate what is the role played by the line integrals in equation (17). Consider now that
all interelement boundaries are subject to continuity conditions of displacements and
rotations. Thus, since M;;’s are continuous across these boundaries, the line integrals along
interior boundaries cancel out and only the integral along the actual boundary of the
assemblage need be considered. This would not be the case if some components of M, are
discontinuous {7]. The boundary integral in equation (17) provides the natural boundary
conditions for ¢, and N,, variables which do not appear explicitly in this formulation. The
boundary conditions for u, and M, are enforced by deleting the corresponding Euler
equations at the boundary and replacing them with equations (11) and (10).
The system of equations for the complete structure is:

al é al ol ol al
T, S0 Soo: =0 =07 s =0 (45
Cu; ar; w; My, M ,,, My, @
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which may be written in matrix form as follows:

where

and

where

LV=P

L,, L;; ... L,
: (6nx 6n), n = number of nodes
L., ... ... L,

-Si1j1 Y, Si, 0 0 0

9, SY, S¥ 0 0 0
L, = S§, 8%, 3’3 C"{l C?:z C‘%’} 66

0 0 Cf F}y Fi, F;

0 CY Fy FYy, FY
Lo 0 4, FY, FY, FYy,

. 1—v
Vo= 3 .
S“ 4(1_v2)A[bxb}+ 2 azaJ:]
i —Eh [
SY, =
12 4(1~v)A[Vba+ ab]

:: Ek 1 y 1‘_V
AL
" 6(1'""2)[ J(Rn Rzz) T Rzz]

Sh = Sty

i Eh 1—v

lj T T e————— 2 3 T — . N
22 4(1~v2)A[a‘aJ+ 3 b,bj]

. Eh 1 v 1—v
gi.—_Er (1 v}
23 6(1-——v2)[a’(R22+R11) b’Ru]

ij Qi
S = S15

i = gii
S32 - 8123

. 1 2v 2(1—v)
fori=j: = ZA[_.__F*..;. +
R%I R%Z RI 1R22 R%l

S =
.o, 1 1 2v 20—v)
fori£j: = A[-_+__+ + :I
R}, R3; RR;; R},

. bb;

o= 7
s 44
Cizjz = 4

44
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(46)

(47)

(48)

{49)

(50)

(31

(52)

(53)

(54)

(55)
(56)

(57

(58)

(59

(60)
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ij
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fori =j:
fori # j:
fori =j:
fori # j:
ab;

=G

= F,
fori=j
fori #j

_ b

=G4

:F{is
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(a;, b;) are the Cartesian components of the oriented side “'j” of the projection of the element
into the x,x, plane (Fig. 2)

L5
Vv, v;
v, W;
v=| |, v,= (75)
Mll
Vn MZZ,
LM21.
P
P, P,,
P L P (76)
: 0
P, 0
L o |
p1,=f(p1,.+ 5 ’L) (77)
‘6 j=tiei 2

and similar expressions for P, and P;,.

Consider now the triangular scheme of subdivision shown in continuous lines in Fig. 3.
Clearly this pattern is biased in the sense that diagonals run in only one direction. It is
found that without any significant increase in computational effort a quadrilateral element
can be generated by averaging the coefficient matrix L as obtained for the patterns shown
with continuous and dashed lines. It can be shown (example no. 1) that in this way a
remarkable improvement in the accuracy and smoothness of the results is achieved without
appreciably increasing the computational effort.

4. BOUNDARY CONDITIONS

The system of differential equations for shallow shells as derived from equation (17)
and equations (20) to (28) is of tenth order, i.e. the solution of the shell boundary value
problem requires that five boundary conditions are specified.

F1G. 3. Triangular patterns; quadrilateral element.
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Let the boundary values be expressed in their component form by (Fig. 4)

u, = vt + L, +wn (78)
N, = Nt +N,t,+Q.n (79)
¢, = — Bt + B, (80)

M, = —-M,t,+M,t,. (81)

FiG. 4. Variables at the shell boundary.

At all points on the boundary three of the components in equations (78) and (79) must
be prescribed. Clearly these three components chosen must be along the directions of t,,
t, and n. Similarly two components in equations (80) and (81) must be prescribed. In order
to specify the appropriate boundary conditions the components of N, and M, are trans-
formed from the local reference system at the boundary (t,, t,, n) to the global curvilinear
system (t,, t,, m) according to vector and second order tensor transformations respectively.

Obviously, for the case of zero transverse shear strains, the component M, cannot be
varied freely in equation (17) and a contraction of the boundary conditions as presented in
Ref. [3] must be performed. In this way one arrives at a system of boundary conditions for
an effective stress resultant N, and M,,, or the corresponding displacement quantities u,
and fB,. The expressions for these effective stress resultants are given in Ref. [3].

5. NUMERICAL EXAMPLES

A computer program has been implemented using the present formulation. Some
selected examples are now presented.

Example 1, Rectangular plate (Fig. 5)

The plate has no transverse shear deformability. Nevertheless, it is observed that when
this finite element procedure is used it is possible to impose five boundary conditions to the
discrete form of the governing equations. In the case at hand, the variable M, has a very
steep variation in the vicinity of the free edge; at the edge itself M,, vanishes and increases
very steeply as a function of x, inwards. Clearly this situation is not reflected by the series
solution which satisfies the contracted form of the boundary conditions. Figure 6 presents
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x2
08 | o8 p,=-1
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[ Fixed / i
Coarse mesh Fine mesh

Fi1G. 5. Rectangular plate under normal pressure.

Results with general
boundary conditions

Results with contracted
boundary conditions

M. 100

— Series solution

o Ref.[8] ; coarse mesh

A Retf. [8] i fine mesh

o Present work; coarse mesh, general b.c.

O Present work, coarse mesh, contracted b.c.

FiG. 6. Comparison of results for M, along line x; = 0-4.

a comparison of the results given by the series solution, those of Ref. [8]. and the present
ones for M,;. In order to illustrate the importance of specifying the contracted form of
the boundary conditions, the values of M, obtained by specifying five boundary conditions
and those obtained with their contracted form are presented in Fig. 6. A more complete
comparison of results is presented in Figs. 7-9.

Example 2, Clamped spherical shell (Fig. 10)

The present results are compared with an analytical solution [6] and with another finite
element solution [9] in Figs. 10 and 11.

Example 3, Pressurized cylindrical shell with a circular hole (Fig. 12)

The edge of the hole is considered free from bending and in-plane stresses and subject
to a uniform transverse shear that equilibrates the internal pressure. A comparison of
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3
o 2
e
- o Ref [8]; coarse mesh
Y & Ref [8]; fine mesh
o Present work; coarse mesh, general b.c.
— Series solution
1 i | 1 |
[oF>,
X

F1G. 7. Comparison of results for M, along line x, = 0-4.

Ref. [8]; coarse mesh
& Ref, [8]; fine mesh
o Present work; coarse m.
general bound. cond.
Series solution

04 08
Xi

FiG. 8. Comparison of results for M,, along line x, = 0-4.

Present work, coarse mesh
general bound cond.

o Ref. [7]; coarse mesh
— Series solution

! I L
04 08
X

F1G. 9. Comparison of results for w along line x; = 0-4.

40

4
Pn

30 x

& Ref [9] | Y #<90
o Present work _——{ 35 Z,,==3|
2ol — Ref. [6] o v=1/6

Mt

Pian view of discretization
used here

-0k
F1G. 10. Spherical shell under uniform normal pressure. Comparison of results for M;; along meridian x, = 0.
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40}

Nzo

20

©  Present work
— Ref. [6]

F1G. 12. Pressurized cylindrical shell with circular hole.

a =306
h=18"1
R|1=425
v=04
r =857
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stresses at the outside and inside surfaces with another approximate solution [10] is pre-

sented in Figs. 13 and 14,

6. CONCLUSIONS

A specialized form of Reissner’s Principle suitable for use in conjunction with the finite
element procedure for thin elastic shell has been developed. The stress couples and linear
displacements are the dependent variables of the formulation.

The numerical results indicate that the accuracy of this finite element procedure com-
pares favorably with previous finite element methods. This mixed method has an advantage

T 22 membrane
N

T22

F1G. 13. Comparison of results for g,, along x, axis.

QOutside surface

X\ /r

Inside surface

a Ref. (10]
o= Present work
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over the displacement method in that the resulting discrete equations are considerably
simpler. It is also observed that the consideration of transverse shear strains does not
appreciably increase the computational effort.

The finite element procedure presented here implies bending stresses which are con-
tinuous across the shell whereas the in-plane stress resultants are not. An obvious refine-
ment to the present procedure would be to use polynominal expansions for the displace-
ment components u and ¢ of a degree higher than the first.

¢ inside surface
€2
1
E
o5 Outside surface
o) R I
| 2 3
X2 /r

F1G. 14. Comparison of results for g, along x, axis.
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A6crpakT—IIpearaercst  crneuManu3upoBaHHas ¢opma BapuauWoHHoro npuHuuna Peiicchepa 1ns
HANPSDKEHNI M NEPEMELIEHUI, NPUroAHas U1a GOPMYINPOBKM BAPHAHTa KOHEYHOTO 3JIEMEHTA ONpene-
SIOLLKX yPABHEHHUI B TEOPMH TOHKUX 0005104k, Y papHeHns Dunepa [uist MoAGULHPOBHHOTO (ByHKIIMOHANA
Peitcciepa, fBJAAKOTCH TPEMa YPaBHEHHAMH PABHOBECHS CHII W TPEMA MOMEHTHBIMH 3aBUCHMOCTAMM
KPHBH3HbI, BLIPAXEHHBIMH B BUIE YDABHCHUH PABHOBECUA JINHEHHOIO BEKTOPA CMELLEHUS M CONPSKEHHBIX
BEKTOPOB HanpshkeHui . [TonyyaroTcs rpaHuysble YCI0Bus BhopMe 0YeBUAHBIX YCI0BHH ITOTO GyHKUMOHANA.
O6nacte 000/I0YKM pa3naraerTcsi Ha COBOKYNHOCTb TPEXYTOJIbHBIX MJIM YETHIPEXYTONIbHbIX 3JIEMEHTOB,
C LENBIO OUPENECNCHHA CHUCTEMBI KYCOYHBIX JIMHEHHBIX (YHKUMiA, Kak CPaBHUTENbLHBIX QYHKLUMH, Ui
3aBHCHMBIX NEPEMEHHBIX 3TOH Popmynuposku. Mcnoneizosanue 3THX (hyHKUMIA, BbIPAXKEHHBIX YIEHAMH
HX 3Ha4YeH#M B y3fiax, B BAPHAUMOHHOM NPUHLMIE NMPHUBOAMT K CUCTEME anrebpauyecknx, COBMECTHBIX
'YpaBHEHHH, AN Y3IOBBIX NEPEeMEHHBIX. OCOBEHHOCTBIO ITOr0 METOA, 110 CPABHEHUIO C APYTUMH NPUOITH-
JKEHHBIMK METONAMH pelleHMs, OKa3bplBaeTca ero anrebpauyeckas npocToTa W TOYHOCTh. HekTophie
YHC/ACHHbIE IPUMEPBI MIUTIOCTPHPYIOT NPAKTHYECKH 0CO6EHHOCTH MeToaa. Koraa 3ToT METO NPHMEHAETCS
clieuHanbHO A aHanu3a W3rHOaeMoM IIACTHMHKY, HabnionaeTcs 3HAYMTENbHOE YTOYHEHHE, Kacatolueecs
npeabiayleH m3BeCTHOM METOAUKM KOHEYHOrO JIEMEHTa.



